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CONTACT BETWEEN A MOVING STAf"lP AND AN ELASTIC HALF-PLANE WHEN THERE IS WEAR* 

V.F. KOMOGORTSEV 

The plane contact problem of elasticity theory is considered for a half- 
plane when there is abrasive wear. It is assumed in the problems considered 
by Galin /l/ that the stamp moves in certain guides ensuring there is no 
closure between the contacting bodies. A solution is given below for one 
of the problems formulated by Galin, without taking account of the simplify- 
ing assumptions mentioned. 

1. The plane problem of elasticity theory of the pressure of a stamp with profile LL'~ = 
Ar’ (A is a given constant) on a half-plane is considered (see the sketch). The stamp under- 
goes a displacement in a direction parallel to the contact strip whereupon wear of the half- 
plane occurs. We assume that there is no friction between the stamp and the half-plane in a 
direction perpendicular to the stamp motion (in the direction of the r-axis). It is required 
to determine the time-varying contact pressure and the settling of the stamp. 

Let u:,(r,t) be the displacement of half-plane boundary 
points along the g-axis due to wear, u'* (x. 1) the elastic 

1 

displacement of the half-plane boundary points, and 6(t) the 
P settling of the stamp. We have from the contact condition 

between the stamp and the half-plane in the section I-0.01 

AX2 I U.1 (X. 1) 2 u'p (1. t) == 6 (t) (-a < J < 0, 1 > 0). (1.1) 

Taking into account according to /l/ that 

u~,-(x,t)=k~p(x.r)dr (1.3) 
Cl 

~(.r,t)=B \ In &p(&t)d;. B_ 2 (1 - VZ) 
-7 

-0 

where p(~.t) is the desired contact pressure, k is a coefficient characterizing the half- 
plane wear, E is Young's modulus, and v is Poisson's ratio of the half-plane material, we 
obtain from (1.1) 

(1.3) 

In addition to (1.3), the contact pressure p(s,1) should satisfy the equilibrium;: con- 
dition 

i; p (.r. t) d.r = P (t > 0) (1.4) 

We assume thatt the contact area I-a,al does not vary with time, which is known to hold 
for a sufficiently large force P assuring total insertion of the stamp into the half-plane at 
t = 0. For this the inequality il,' 

s = a=Al(BP) < 1 (1.5) 

should be satisfied. 
As is well-known /l/, under the condition (1.5) 

(1.6) 

Thus, it is required to solve (1.3) for p&t) under the additional conditions (1.4) and 
(1.6) by taking into account that the settling of the stamp s(1) is also unknown. 

2. Setting t= 0 in (1.3) and subtracting the equation obtained from (1.3), we will have 
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a 

B s In ' -ME* t) - P(E> O)ld6 + 
--a 

(2.1) 

k ~p(x,~)d~=-a(t)-6(O) (-a<x<utt~O). 

To eliminate the unknown right side from (2.1), we integrate (2.1) with respect to z in 
the interval I-a, al. Changing the order of integration in the double integrals obtained and 
taking account of the equilibrium condition (1.4), we find 

W--(O)=+ 5 dr 5 In -&$P(6,t)-~(tWdF,i~ . (2.2) 
-0 4 

Eliminating the difference 6(t)- 6 (0) from (2.1) by using the relationship (2.2), we 
arrive at the equation 

(2.3) 

t 
k p(r,r)d~-.-!f& s 

0 

We now make the following natural assumption from the viewpoint of mechanics: the contact 
pressure is equalized during wear, i.e., we seek it in the form 

p (I, t) = P;(2a) + q (I, 1) (2.4) 

q(r,t) -, O(-a<r<a), 5 
q(z,t)dz=O @.>O). (2.5) 

(1-S) -a 

The last condition results from (1.4). Substituting (2.4) into (2.3), we obtain an 
equation to determine the new unknown function 4 (2, t) 

dz’ k&t)-q(E,@)]dF -i- (2.6) 

k \q(r,T)dTrrO (-a< r<o,tLO). 
b 

We solve the integral equation (2.6) by separation of variables. Taking the first con- 
dition in (2.5) into account, we seek the particular solution of (2.6) in the form 

q(r.t)=q (~)esp(- ki.t’B), A> 0; i v(s)dr=O (2.7) 
-D 

(the integral condition follows from the last condition in (2.5) ). Substituting expression 
(2.7) into (2.6!, we obtain 

- & _(.ln &d+]v(E)dE-=O (2.8) 

(-a<-:<<). 

We note that when the function q(r) satisfies this integral equation the integral con- 
dition (2.7) is automatically satisfied; this can be seen by integrating both sides of (2.8) 
with respect to .r in the interval [--a, 01. 

After seeking the eigenvalues h, and eigenfunctions V,,(I) (n = 1,2,...) of (2.81, we 
represent the desired function q(z,L) by the series 

The coefficients c, of series (2.9) are found, as follows from (2.4) and (1.6), from the 

expansion 

q(1,O)=P[ ‘--;_-s’z --&I =~ce,u,(I)(-n<s<u). 
n-1 

(2.10) 



245 

3. We henceforth take the quantity a as the unit of length, i.e., we consider a=;i in 
all the preceding and subsequent formulas. For a=i we shall seek the eigenvalues and eigen- 

functions of (2.8) by Galerkin's method 

where T1(x) are Chebyshev polynomials of the first kind. Selection of the form 13.1) for the 
function m(2) is advisable because of the presence of the spectral xalation 

@=UiTg(r) f-1 <z <1) 

oo=xln2, vi = n/i (i= 1, 2,...) 

as well as because of the known fact of the orthogonality of Chebyshev polynomials of the 
first kind 

(3.3) 

Only the even polynomials T,*(r) are in the expansion (3.1) since the function p(z) 

must be even. 
We substitute (3.1) into (2.8) for a= 1 and use the spectral relationship (3.2). Then 

multiplying both sides of the equation obtained by Taj (z)(j=O,._.,??) and integrating with 
respect to z between -1 and 1, by taking account of the orthogonality condition (3.3) we 
arrive at the homogeneous algebraic system 

Here 

aj- h 2 bjia, =O (j=O,i,...N). 
iro 

(3.4) 

Because of the identity T,(cos~) = cos rn~ (m = 0.1.. ..I, the integrals in (3.5) are 
evaluated explicitly. Hence, for the coefficients bl, (t,j = 0, i,...,N) we arrive at the ex- 
pression 

b,ji = $ a,,, aji=V,_j + yi+j - 2y;,y,, 1 
yrn= - _-- 4nr*- 1 (3.6) 

(lr=C,&it.,.). 

Since bpf ~0 according to (3.6), it follows from system (3.4) that a0 = 0. The expansion 
(3.1) then takes the form 

‘I 

aiT,i (J) {- 1< I < 1) . (3.7) 

The coefficients nl in this expansion are found from the solution of the homogeneous 
algebraic system (3.4) which will be converted to the following form by the introduction of 
the new unknowns x1 = a&lfi(i = 1, 2, . . ., N) 

(3.8) 

with a matrix already symmetric. As is well-known, all N eigenvalues h,(n = 1,2, . . ..N) of 
such a system are real with corresponding N linearly independent column eigenvectors 

z& = f&l, r,,, . . ‘, 2&J) (n = 1, 2, . . .1 N). (3.91 

The eigenvalues &,(n = i,2,. . ., ~‘k’) of system (3.8) are also approximately the desired 
eigenvalues of the integral equation (2.8) fox a = 1 (the greater N the more exact the 
eigenvaluesl, and the eigenfunctions (pn(x) (n = i,2, . . ..N) are found from the formula 
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(3.10) 

following from (3 
Having found 

expression for the function Q b> t) 

71, where he = vi z,,~. 
i, and mFn (z) (n = I, 2, . . ., N), by using (2.9) we can also write an approximate , 

q@yt)= yT&rg g c&J,*(z)exp (- -+ 1) (3.1i) 

The unknown coefficients c,(n = 1.,2,..., ilr) are found from the expansion (2.10) which 
yields for a=1 

.V 
P 

XI/f-- 
1 --s-&x’ --i; gz-3. (3.121 

Here 

Pi = n$s %i% (iz.=1,2,...,N). (3.131, 

We note that the approximate equality (3.121, obtained by comparing the approximate and 
exact expressions for p(2,O) goes over into the exact value for all--l <z<lfox N = 00. 
Indeed, for A%' = 30 it is transformed into a Fourier trigonometric series expansion of given 
continuous and continuously differentiable functions after the substitutions X Wz COS FS T,i 

(cos q) = cos 2ip. 
The coefficients pi should be found from the expansion (3.12), after which we find the 

coefficients c, (n = 1. 2:. .,, :v) of (3.11) by solving the inhomogeneous system (3.13). The 
matrix of system (3.13) is non-singular since it is formed from N linearly independence column- 
vectors o,,~ = 1 Y-T,,~. and therefore, the system has a unique solution. 

To find the quantities 8, we multiply both sides of (3.12) by T,;(r) fj = 1.2, . . ..x) and 
we integrate the result with respect to x between -1 and 1. Taking into account that T,(x) = 
1, T,(x)=Z?- 1 so that 1 - s - 2sb: = T,(z)- ST*(Z) and using the orthogonality property 
(3.3), we find 

&=-&t-+--sj. &=A (i=2,3,....X). (3.11) 

Having found the function 4 (J? I) I the desired contact pressure p (x7 t) is also found 
using (2.4), and in additiori, the changein stamp settling with time using (2.2). From (3.11)) 
we fine 

(3.15) 

Confining ourselves in particular to the simplest case .\‘= 1. we obtain to a first approxi- 
mation 

45 
i.x= y": TJir*t)= _&J /\ (3.liij 

_$'1-_ -- !~__sj(::~'__l)~sp(\~Ij] 

Comparing the approximation expression (3.16) and the exact expression (1.6) for ,r,(x, 0) 
we see that the pressure at the centre of the contact area, say, given by (3.16) differs from 

the exact value by not more than 1000 for all O< s 5 1. This error increases somewhat as one 
approaches the edge of the contact area. To reduce it, the first approximation formula (3.16) 
should be replaced by a more exact formula by increasing the value of N. 
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